Quiz 5

Name: \qquad Score: \qquad
1.

Linear functions	n vectors in V
$f: \mathbb{R}^{n} \rightarrow V$	$\left\{f\left(e_{1}\right), \ldots, f\left(e_{n}\right)\right\}$ in V
f one to one	linearly indep
f onto	$\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)=V$
f isomorphism	Basis for V
image of f in V	$\operatorname{Span}\left(v_{1}, \ldots, v_{n}\right)$ in V

2. Find the determinant $\operatorname{det} A$ of the matrix A. Is A invertible?

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
2 & -5 & 1 \\
1 & -5 & 0 \\
7 & -15 & 4
\end{array}\right] \\
\operatorname{det} A=0
\end{gathered}
$$

Determinant $\operatorname{det} A=$ \qquad
3. Find the inverse A^{-1} of the matrix A :

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & -3 & -3 \\
-1 & 4 & 5 \\
1 & -2 & 0
\end{array}\right] \\
A^{-1} & =\left[\begin{array}{ccc}
10 & 6 & -3 \\
5 & 3 & -2 \\
-2 & -1 & 1
\end{array}\right]
\end{aligned}
$$

$$
A^{-1}=\left[\begin{array}{llll}
\square & \square & \square \\
\square & \square & \square
\end{array}\right]
$$

